Synthesis and reactions of 3,3'-dibromodihydrodipyrrins

C hitoshi K itamura and Yoshiro Yamashita*

Chemical M aterials C entre, Institute for M olecular Science, M yodaiji, O kazaki 444, J apan

Abstract

The dibromodihydrodipyrrin diester 7 was prepared by reaction of the corresponding pyrrole 6 with dimethoxymethane and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathbf{O}$. Subsequently 7 was converted into the dibromodihydrodipyrrin 2 in moderate yield. The diformyldihydrodipyrrin 3 was readily prepared by methylenation of the pyrrole 9 with $B F_{3} \cdot E t_{2} \mathbf{O}$, followed by deprotection. A ttempted synthesis of the porphyrin 1 from 2 and 3 was unsuccessful because of the low reactivity of 2 . The reaction of 7 or 11 with hexabutylditin in the presence of a Pd catalyst produced a new type of tin complex 12 in low yield. This complex was also readily obtained by an alternative procedure and found to revert to 7 upon reaction with T FA.

Introduction

Porphyrins are of considerable importance and interest and in recent years their functionalization has attracted much attention. However, most of the porphyrins prepared so far are meso-substituted compounds, the corresponding functionalized β-substituted meso-non-substituted porphyrins having been scarcely reported other than for β-alkyl derivatives; this is because of limitations and difficulties in their synthesis. The synthesis of such compounds is therefore a challenge. Recently, some β - and meso-substituted porphyrins have been synthesized utilizing cross-coupling reactions of β-halogeno derivatives. ${ }^{1}$ Of such reactions, that of Stille and Suzuki ${ }^{2}$ is excellent for the formation of carbon-carbon bonds, and we thought that it might be applied to the synthesis of β-substituted meso-nonsubstituted porphyrins. To test this, we attempted to prepare β bromoporphyrin 1 using the ' $2+2$ ' M acD onald method ${ }^{3}$ (Scheme 1). Although the plan was unsuccessful, we learned

Scheme 1
something of β-substituted dihydrodipyrrin compounds, the properties of which are unknown; we report here their preparation and reactivity.

Results and discussion

The bromopyrrole ester 6^{4} was easily prepared (57%) in a twostep reaction by bromination of trichloroacetylpyrrole 4, ${ }^{5}$ and subsequent ester formation from the trichloroacetyl group ${ }^{6}$ (Scheme 2). Because of its two electron-withdrawing groups however, compound 6 was very stable and, therefore, it was difficult to prepare the dihydrodipyrrin 7 from it; thus, every combination of protic acid (e.g. $\mathrm{HCl}, \mathrm{HBr}, \mathrm{TFA}$ and $\mathrm{p}-\mathrm{TsOH}$) and methylene source (e.g. formaldehyde and dimethoxymethane) failed in this respect. H owever an earlier report ${ }^{7}$ suggested that $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was useful for the synthesis of a dihydrodipyrrin from a pyrrole ester with an electron-withdrawing β substituent. By this technique the pyrrole 6 with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in

Scheme 2 Reagents and conditions: i, $\mathrm{Br}_{2}, \mathrm{CHCl}_{3}, \mathrm{RT}, 10 \mathrm{~min}$; ii, $\mathrm{NaOM} \mathrm{e}, \mathrm{M} \mathrm{eOH}, \mathrm{RT}, 20 \mathrm{~min}$; iii, $\mathrm{CH}_{2}\left(\mathrm{OM} \mathrm{e}_{2}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}\right.$, 24 h ; iv, $\mathrm{KOH},\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}, 120^{\circ} \mathrm{C}, 15 \mathrm{~min}$ and $150^{\circ} \mathrm{C}, 30 \mathrm{~min}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the dihydrodipyrrin diester $\mathbf{7}$ in 59% yield (Scheme 2). Although the pyrrole 6 has two reaction points, cross-linking occurred only at the α-position as confirmed by X-ray analysis of the derivatives of 7 . We next attempted saponification and subsequent decarboxylation of $\mathbf{7}$ to give $\mathbf{2}$. The decarboxylation step was difficult, pyrolysis of the carboxylic acid resulting only in blackening; the acid unreactive in the presence of TFA. This behaviour resembles the unsuccessful attempts to decarboxylate 4-bromopyrrole-2-carboxylic acid. ${ }^{8}$ By a careful study of the experimental conditions we succeeded in the preparation of the dihydrodipyrrin in 47% yield by heating 7 at $150^{\circ} \mathrm{C}$ in ethylene glycol under basic conditions for 30 min (Scheme 2). Careful purification of $\mathbf{2}$ was necessary since in the presence of impurities it increasingly blackened with time. When pure, 2 was white, stable at room temperature under normal conditions for several hours and slightly light-sensitive; after 3 days, 90% of 2 survived.
The synthesis of diformyldihydrodipyrrin $\mathbf{3}$ was much easier than that of 2. Protection of formylpyrrole $\mathbf{8}^{9}$ by reaction ${ }^{10}$ with cyanoacetic acid ester and methylamine in methanol for 1 h afforded the vinylpyrrole 9 (89%) which by methylenation with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $30^{\circ} \mathrm{C}$ for 11 h gave the dihydrodipyrrin 10 (86\%) (Scheme 3). We were unable to recognize spectroscopically the geometrical isomers that should result statistically: either E or Z derivatives for 9 and either E, E, E, Z or Z, Z derivatives for $\mathbf{1 0}$. When heated with conc. aqueous KOH for $30 \mathrm{~min} \mathbf{1 0}$ was deprotected to give the dihydrodipyrrin 3 (72\%) (Scheme 3). The dihydrodipyrrin 10 has a low solubility in common organic solvents.

Scheme 3 Reagents and conditions: i, $\mathrm{CH}_{2}(\mathrm{CN}) \mathrm{CO}_{2} \mathrm{Me}, \mathrm{M} \mathrm{eN} \mathrm{H}$ $\mathrm{MeOH}, \mathrm{RT}, 1 \mathrm{~h} ; \mathrm{ii}, \mathrm{CH}_{2}(\mathrm{OM} \mathrm{e})_{2}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 30^{\circ} \mathrm{C}$, 11 h ; iii, $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}, 110^{\circ} \mathrm{C}, 30 \mathrm{~min}$

A ttempted synthesis of the porphyrin $\mathbf{1}$ from the dihydrodipyrrins $\mathbf{2}$ and $\mathbf{3}$ (Scheme 4), with an acid catalyst such as p-

$$
2+3 \nrightarrow 1
$$

Scheme 4

TsOH and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the dark failed to give detectable amounts of product. In fact the reactivity of the dihydrodipyrrin 2 was poor, in that it failed to react with Ehlrich's reagent, 4-dimethylaminobenzaldehyde, and other aldehydes. This unexpected result is explicable in terms of a reduction of the π-electron density on the pyrrole ring as the result of the electron-withdrawing bromo substituent. This suggests that it is necessary to have an electron-donating β-substituent on the pyrrole ring to ensure the success of the porphyrin synthesis.
N ext, in order to examine the reactivity of the two bromo substituents of the dihydrodipyrrin diester, we attempted its conversion into a tributyltin compound. First, the N-Bocprotected dihydrodipyrrin 11 was synthesized in 89% yield by reaction ${ }^{11}$ of the dihydrodipyrrin 7 with $\mathrm{Boc}_{2} \mathrm{O}$ in the presence of 4-dimethylaminopyridine (DMAP) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 5).

Scheme 5 R eagents and conditions: $\mathrm{i}, \mathrm{Boc}_{2} \mathrm{O}, \mathrm{D} \mathrm{M} \mathrm{AP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 1 \mathrm{~h}$ ii, $\mathrm{Bu}_{3} \mathrm{SnSnBu}_{3}, \mathrm{Pd}(\mathrm{OA} \mathrm{c})_{2}, \mathrm{PPh}_{3}, \mathrm{DMF}, 120^{\circ} \mathrm{C}, 2 \mathrm{~h}$; iii, $\mathrm{Bu}_{3} \mathrm{SnSnBu}_{3}$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 6 \mathrm{~h}$

The structure of 11 was confirmed by X-ray analysis (Fig. 1), showing a dihedral angle of 82.76° between the two pyrrole rings. Subsequently, reaction ${ }^{12}$ of 11 with hexabutylditin in the presence of a Pd catalyst gave, unexpectedly, the dihydro-dipyrrin-dibutyltin complex $\mathbf{1 2}$ (28%) (Scheme 5), the structure of which was also determined by X-ray analysis (Fig. 2). The

Fig. 1 ORTEP view of N-Boc-protected dihydrodipyrrin 11 showing 25% thermal ellipsoids with crystallographic numbering scheme

Fig. 2 ORTEP view of dihydrodipyrrin-tin complex 12 showing 30\% thermal ellipsoids with the crystallographic numbering scheme
dihydrodipyrrin moiety in this is nearly coplanar with a dihedral angle of 18.42° between the two pyrrole rings. The tin atom of 12 has a distorted tetrahedral geometry (Table 1). Noteworthy are the relatively short intramolecular distances between the tin and oxygen atoms on the carbonyl groups (Table 1). In addition, it was found that $\mathbf{1 2}$ was stable under normal conditions, soluble in non-polar organic solvents such as hexane and almost insoluble in polar solvents such as methanol. At present, we have no reaction mechamism which satisfactorily explains the formation of $\mathbf{1 2}$. Since the partial formation of $\mathbf{7}$ was detected by TLC analysis in the reaction of 12 with a Pd catalyst in DM F when heated, we allowed 7 to react directly with hexabutylditin in the presence of a Pd catalyst; complex 12 was obtained in 14% yield (Scheme 5). Therefore, the reaction of $\mathbf{7}$ with the tin reagent may be the key step for the formation of $\mathbf{1 2}$ from 11. In this reaction the dibromo substituents remained unchanged. In order to replace the dihalogen substituents by tributyltin ones, the diiodo dihydrodipyrrin would be required. ${ }^{13}$
Since the dihydrodipyrrin-tin complex $\mathbf{1 2}$ seemed to result from reaction of a dianion of the dihydrodipyrrin 7 with dibutyltin dichloride, we attempted to optimize the conditions for this. The ready synthesis of complex $\mathbf{1 2}$ in 93% yield by a reaction with trimethylamine as base in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 1 h (Scheme 6) suggests that the facility with which this occurs is a result of the reduction of the pK_{a} of the dihydrodipyrrin by the presence of the two electron-withdrawing groups per pyrrole ring. ${ }^{14}$ Furthermore, we found that the conversion of 12 to 7 with TFA readily occurred. The dihydrodipyrrin 7 precipitated upon reaction of 12 with TFA (2 equiv.) in hexane for 20 min was

Table 1 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $\mathbf{1 2}$

$\mathrm{Sn}(1)-\mathrm{N}(1)$	2.164(6)
$\mathrm{Sn}(1)-\mathrm{N}(2)$	2.144(6)
$\mathrm{Sn}(1)-\mathrm{C}(14)$	2.049(7)
$\mathrm{Sn}(1)-\mathrm{C}(18)$	2.065(7)
$\mathrm{Sn}(1) \cdots \mathrm{O}(1)$	2.629(5)
$\mathrm{Sn}(1) \cdots \mathrm{O}$ (3)	2.519(5)
$\mathrm{N}(1)-\mathrm{Sn}(1)-\mathrm{N}(2)$	83.2(2)
$N(1)-S n(1)-C(14)$	103.8(3)
$N(1)-S n(1)-C(18)$	105.3(3)
$\mathrm{N}(2)-\mathrm{Sn}(1)-\mathrm{C}(14)$	107.4(2)
$\mathrm{N}(2)-\mathrm{Sn}(1)-\mathrm{C}(18)$	110.7(3)
$\mathrm{C}(14)-\mathrm{Sn}(1)-\mathrm{C}(18)$	134.0(3)
$\mathrm{N}(1)-\mathrm{Sn}(1) \cdots \mathrm{O}(1)$	70.2(2)
$\mathrm{N}(1)-\mathrm{Sn}(1) \cdots \mathrm{O}$ (3)	153.8(2)
$\mathrm{N}(2)-\mathrm{Sn}(1) \cdots \mathrm{O}(1)$	153.2(2)
$\mathrm{N}(2)-\mathrm{Sn}(1) \cdots \mathrm{O}$ (3)	70.6(2)
$\mathrm{C}(14)-\mathrm{Sn}(1) \cdots \mathrm{O}(1)$	77.1(2)
$\mathrm{C}(14)-\mathrm{Sn}(1) \cdots \mathrm{O}$ (3)	85.8(3)
$\mathrm{C}(18)-\mathrm{Sn}(1) \cdots$ (1)	80.3(3)
$\mathrm{C}(18)-\mathrm{Sn}(1) \cdots 0$ (3)	83.5(3)
$\mathrm{O}(1) \cdots \cdot \mathrm{Sn}(1) \cdots 0$ (3)	136.0(2)

$$
7 \underset{\text { ii }}{\stackrel{i}{\longrightarrow}} 12
$$

Scheme 6 Reagents and conditions: $i, \mathrm{Bu}_{2} \mathrm{SnCl}_{2}$, (5:1) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{3} \mathrm{~N}$, RT, 1 h; ii, TFA , hexane, RT, 20 min
collected easily (Scheme 6). Such an interconversion is unprecedented and may be useful for synthesis of dihydrodipyrrin derivatives.

Experimental

M ps were measured on a Yanaco M P-500D or a Büchi 535 melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin-EImer 1640 FT-IR spectrometer as K Br pressed pellets. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL EX 270 FT spectrometer; J values are in Hz . M ass spectra were obtained on a Shimadzu QP-1000EX (EI) or a Shimadzu K ratos Concept 1 s mass spectrometer (FAB). Elemental analyses were carried out on a Yanaco M T-3 CHN Corder. Commercially available reagents were used as supplied unless otherwise stated. All reactions were carried out under argon. Column chromatography was performed on silica gel (Wakogel C-300). Compounds $\mathbf{4}^{5}$ and $\mathbf{8}^{9}$ were prepared as previously described.

4-B romo-2-trichloroacetylpyrrole 5^{4}

Bromine ($17.06 \mathrm{~g}, 107 \mathrm{mmol}$) was added dropwise to a solution of 2-trichloroacetylpyrrole $4^{5}(21.26 \mathrm{~g}, 100 \mathrm{mmol})$ in CHCl_{3} ($100 \mathrm{~cm}^{3}$) cooled in an ice-bath. The resulting solution was stirred at room temperature for 10 min and then poured into water. The organic phase was separated, washed with aq. NaHCO_{3} and water, dried ($\mathrm{M} \mathrm{SO}_{4}$) and evaporated under reduced pressure. Recrystallization of the residue from hexane gave the product $5(20.00 \mathrm{~g}, 69 \%)$ as a white solid, mp 136$138{ }^{\circ} \mathrm{C}$ (lit., ${ }^{4} 134-136^{\circ} \mathrm{C}$).

4-B romo-2-methoxycarbonylpyrrole 6^{4}

A solution of $\mathrm{NaOM} \mathrm{e}\left(1.00 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in methanol; $25 \mathrm{~cm}^{3}, 25.0$ mmol) was added slowly to a solution of 4 -bromo-2trichloroacetylpyrrole $5(14.58 \mathrm{~g}, 50.0 \mathrm{mmol})$ in methanol (60 cm^{3}). The mixture was then stirred at room temperature for 20 min after which it was diluted with water ($200 \mathrm{~cm}^{3}$) and the organic layer was separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layer and extracts were washed with water, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated under reduced pressure. Recrystallization of the residue from hexane gave the product $6(8.35 \mathrm{~g}, 82 \%)$ as a white solid, mp 106$106.5^{\circ} \mathrm{C}$ (lit., ${ }^{4} 98.5-100{ }^{\circ} \mathrm{C}$).

Bis(3-bromo-5-methoxycarbonylpyrrol-2-yl)methane 7

$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(2.84 \mathrm{~g}, 20.0 \mathrm{mmol})$ was added dropwise to a solution of 4-bromo-2-methoxycarbonylpyrrole 6 ($4.08 \mathrm{~g}, 20.0 \mathrm{mmol}$) and dimethoxymethane ($7.61 \mathrm{~g}, 100 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$. A fter agitation of the mixture for several minutes, a white solid was precipitated. The reaction mixture was stirred at room temperature for 24 h , after which it was concentrated with a rotary-evaporator under reduced pressure. The resulting reddish solid was filtered off, washed with a small volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and recrystallized from CHCl_{3}-toluene (5:1) to give the title compound $7(2.48 \mathrm{~g}, 59 \%)$ as a white solid, $\mathrm{mp} 223-226^{\circ} \mathrm{C}$ (decomp.) (Found: C, 37.33; H, 2.71; N, 6.69. Calc. for $\left.\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Br}_{2}: \mathrm{C}, 37.17 ; \mathrm{H}, 2.88 ; \mathrm{N}, 6.67 \%\right) ; \delta_{\mathrm{H}}(270 \mathrm{M} \mathrm{Hz}$, $\left.\mathrm{CDCl}_{3}\right) 3.78\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 4.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.75(2 \mathrm{H}$, d, J $\left.{ }_{1,4} 2.6,2 \times 4-\mathrm{H}\right)$ and $10.55(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{NH}) ; \delta_{\mathrm{c}}(67.8$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 23.97, 52.27, 97.90, 116.95, 121.71, 131.64 and 161.51; $v_{\max } / \mathrm{cm}^{-1} 3229(\mathrm{NH}), 3137,1684(\mathrm{C}=0), 1489,1440$, 1327, 1277, 1251, 1211, 1005 and 766; m/z (EI) 422 (${ }^{+}$, 48\%), $420\left(\mathrm{M}^{+}, 100\right)$ and $418\left(\mathrm{M}^{+}, 50\right)$.

Bis(3-bromopyrrol-2-yl)methane 2

In the dark, a suspension of the dihydrodipyrrin $6(212 \mathrm{mg}, 0.50$ mmol) and $85 \% \mathrm{KOH}$ ($152 \mathrm{mg}, 2.30 \mathrm{mmol}$) in ethylene glycol (2 cm^{3}) was stirred first at $120^{\circ} \mathrm{C}$ for 15 min and then at $150^{\circ} \mathrm{C}$ for 30 min to give a black reaction mixture; this was then immediately poured onto ice After neutralization with $\mathrm{AcOH}(0.2$ cm^{3}), the resulting solid was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with water, dried $\left(\mathrm{M}_{\mathrm{gSO}}^{4}\right.$) and evaporated in the dark under reduced pressure Purification of the crude product by column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ($3: 1$) as eluent gave the title compound $\mathbf{2}$ as a white solid (72 $\mathrm{mg}, 47 \%$), mp $84.5-87^{\circ} \mathrm{C}$ (decomp.) (Found: C, 35.71; H, 2.61; $\mathrm{N}, 9.03$. Calc. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Br}_{2}: \mathrm{C}, 35.56 ; \mathrm{H}, 2.65 ; \mathrm{N}, 9.22 \%$). The presence of trace impurities damaged the product; $\delta_{\mathbf{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.17(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.6$ and 3.0$)$, $6.60\left(2 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{J} 3.0\right.$ and 3.0$)$ and $7.89(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{NH})$; $\delta_{\mathrm{c}}\left(67.8 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 23.04,95.64,110.93,117.65$ and 126.31 ; $v_{\text {max }} / \mathrm{cm}^{-1} 3358(\mathrm{NH}), 3131,1560,1267,1081,1006,885$ and $725 ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 306\left(\mathrm{M}^{+}, 27 \%\right), 304\left(\mathrm{M}^{+}, 53\right), 302\left(\mathrm{M}^{+}, 27\right)$ and 143 (100).

3-Bromo-2-(2-cyano-2-methoxycarbonylvinyl)pyrrole 9

$40 \% \mathrm{M} \mathrm{eN} \mathrm{H}_{2}$ in methanol ($0.2 \mathrm{~cm}^{3}$) was added dropwise to a solution of pyrrole 2-carbaldehyde $\mathbf{8}^{9}(3.49 \mathrm{~g}, 20.0 \mathrm{mmol})$ and methyl cyanoacetate ($2.08 \mathrm{~g}, 20.8 \mathrm{mmol}$) in methanol $\left(60 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for 1 h , after which it was evaporated under reduced pressure. Recrystallization of the residue from methanol gave thetitle compound 9 as a yellow solid ($4.56 \mathrm{~g}, 89 \%$), mp $179-180.5^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 42.38 ; \mathrm{H}, 2.72 ; \mathrm{N}, 10.97$. Calc. for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}$: C, $42.38 ; \mathrm{H}, 2.77 ; \mathrm{N}, 10.98 \%$); $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz},\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-D M SO) 3.80 (3 $\left.\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.34(1 \mathrm{H}, \mathrm{s}), 7.60(1 \mathrm{H}, \mathrm{s}), 8.90(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C})$ and 12.39 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$); $\delta_{\mathrm{c}}\left(67.8 \mathrm{M} \mathrm{Hz},\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-D M SO $) 52.83,93.01$, 99.80, 116.52, 117.09, 126.78, 127.48, 142.01 and 163.16; $v_{\text {max }} /$ $\mathrm{cm}^{-1} 3359(\mathrm{NH}), 3120,3030,2950,2217(\mathrm{C} \equiv \mathrm{N}), 1715(\mathrm{C}=0)$, 1605, 1383, 1261, 1229, 1125 and 918; m/z (EI) 256 (${ }^{+}$, 78\%), $254\left(\mathrm{M}^{+}, 78\right)$ and 224 (100).

Bis[3-bromo-5-(2-cyano-2-methox ycarbonylvinyl)pyrrol-2-yl] methane 10

$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(2.84 \mathrm{~g}, 20.0 \mathrm{mmol})$ was added slowly to a solution of the vinylpyrrole $9(2.56 \mathrm{~g}, 10.0 \mathrm{mmol})$ and dimethoxymethane ($3.61 \mathrm{~g}, 47.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(250 \mathrm{~cm}^{3}\right)$. The mixture was stirred at $30^{\circ} \mathrm{C}$ for 11 h , and then cooled in an ice-bath and allowed to stand for 30 min . The resulting yellow solid was filtered off, washed with a small volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and collected. Vacuum drying of the residue afforded the analytically pure dihydrodipyrrin 10 as a yellow powder ($2.26 \mathrm{~g}, 86 \%$), mp $242-244{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 43.41; H, 2.87; N, 10.72. Calc. for $\left.\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Br}_{2}: \mathrm{C}, 43.71 ; \mathrm{H}, 2.70 ; \mathrm{N}, 10.73 \%\right) ; \delta_{\mathrm{H}}(270$
$\left.\left.\mathrm{MHz},{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DM} \mathrm{SO}\right) 3.79\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 4.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $7.39\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} \mathrm{I}_{1,4} 2.0,2 \times 4-\mathrm{H}\right), 8.08(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}=\mathrm{C})$ and $12.35(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{NH}) ; \delta_{\mathrm{c}}\left(67.8 \mathrm{M} \mathrm{Hz},\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-D M SO) 24.08 , $52.80,92.17,100.74,116.66,117.88,125.97,134.14,141.65$ and 163.27; $v_{\max } / \mathrm{cm}^{-1} 3258$ (NH), 3132, 2956, 2217 ($\mathrm{C} \equiv \mathrm{N}$), 1718 ($\mathrm{C}=0$) , 1693, 1602, 1430, 1284, 1218, 1148 and 825 ; m / z (EI) 524 $\left(\mathrm{M}^{+}, 27 \%\right), 522\left(\mathrm{M}^{+}, 53\right), 520\left(\mathrm{M}^{+}, 27\right)$ and $330(100)$.

B is(3-bromo-5-formylpyrrol-2-yl)methane 3

A suspension of the dihydrodipyrrin 10 ($1.05 \mathrm{~g}, 2.00 \mathrm{mmol}$) and $85 \% \mathrm{KOH}(8.02 \mathrm{~g}, 121 \mathrm{mmol})$ in water $\left(20 \mathrm{~cm}^{3}\right)$ was stirred in an oil-bath held at $110^{\circ} \mathrm{C}$ for 30 min . A fter cooling to room temperature, the mixture was poured onto ice and neutralized with conc. HCl (ca. $11.5 \mathrm{~cm}^{3}$). The product was extracted with A cOEt, and the organic solution was washed with brine, dried (MSO_{4}) and evaporated under reduced pressure. Recrystallization of the residue from ethanol yielded the title compound 3 as a fine white solid ($518 \mathrm{mg}, 72 \%$), mp $251-254^{\circ} \mathrm{C}$ (decomp.) (Found: C, 36.82; H, 2.37; N, 7.84. Calc. for $\left.\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}_{2}: \mathrm{C}, 36.70 ; \mathrm{H}, 2.24 ; \mathrm{N}, 7.78 \%\right) ; \delta_{\mathrm{H}}(270 \mathrm{M} \mathrm{Hz}$, [${ }^{2} \mathrm{H}_{6}$]-D M SO) $4.01\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.06\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,4} 2.3,2 \times 4\right.$ H), $9.39(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CHO})$ and $12.33(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{NH})$; $\delta_{\mathrm{c}}\left(67.8 \mathrm{M} \mathrm{Hz},\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-D M SO) 23.13, $97.20,121.71,131.73$, 133.96 and $178.75 ; v_{\text {max }} / \mathrm{cm}^{-1} 3307(\mathrm{NH}), 3087,1661(\mathrm{C}=0)$, 1634, 1428, 1407, 1118 and 753; m/z (EI) 362 ($\mathrm{M}^{+}, 50 \%$), 360 $\left(\mathrm{M}^{+}, 100\right)$ and $358\left(\mathrm{M}^{+}, 52\right)$.

B is[3-bromo-1-(tert-butox ycarbonyl)-5-(methoxycarbonyl)-pyrrol-2-yl]methane 11

4-Dimethylaminopyridine ($48 \mathrm{mg}, 0.40 \mathrm{mmol}$) was added to a suspension of the dihydrodipyrrin $7(1.68 \mathrm{~g}, 4.00 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(2.61 \mathrm{~g}, 12.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$. Within a few minutes there was liberation of CO_{2} and dissolution of 7 started. The reaction mixture was stirred at room temperature for 1 h after which excess of $\mathrm{Boc}_{2} \mathrm{O}$ was removed by addition of 2diethylaminoethylamine ($463 \mathrm{mg}, 3.99 \mathrm{mmol}$); the solution was then stirred for an additional 10 min . It was then washed with aq. KHSO_{4}, water, aq. NaHCO_{3} and brine, dried ($\mathrm{M} \mathrm{gSO}{ }_{4}$) and evaporated under reduced pressure. Column chromatography of the residue with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent and recrystallization of the product from ethanol gave the title compound 11 as white crystals ($2.21 \mathrm{~g}, 89 \%$), mp $153-157^{\circ} \mathrm{C}$ (decomp.) (Found: C, 44.47; $\mathrm{H}, 4.40 ; \mathrm{N}, 4.52$. Calc. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Br}_{2}: \mathrm{C}, 44.54 ; \mathrm{H}, 4.54 ; \mathrm{N}$, $4.52 \%) ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 1.49\left[18 \mathrm{H}, \mathrm{s}, 2 \times\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 3.81$ $\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 4.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and $6.77(\mathrm{~s}, 2 \mathrm{H}, 2 \times 4-$ H); $\delta_{\mathrm{c}}\left(67.8 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 24.00,27.28,51.88,85.84,100.23$, $120.64,124.19,131.97,148.30$ and $160.13 ; v_{\text {max }} / \mathrm{cm}^{-1} 3128$, 2989, 1766 ($\mathrm{C}=0$), 1703 ($\mathrm{C}=0$) , 1484, 1369, 1297, 1212, 1162, 1133 and 847 ; $\mathrm{m} / \mathrm{z}(\mathrm{EI}) 422\left(\mathrm{M}^{+}-2 \times \mathrm{CO}_{2}-2 \times \mathrm{C}_{4} \mathrm{H}_{8}, 52 \%\right)$, $420\left(\mathrm{M}^{+}-2 \times \mathrm{CO}_{2}-2 \times \mathrm{C}_{4} \mathrm{H}_{8}, 100\right)$ and $418\left(\mathrm{M}^{+}-2 \times\right.$ $\mathrm{CO}_{2}-2 \times \mathrm{C}_{4} \mathrm{H}_{8}, 50$).

Preparation of the dihydrodipyrrin-tin complex 12

M ethod A. A suspension of N-B oc-protected dihydrodipyrrin 11 ($100 \mathrm{mg}, 0.16 \mathrm{mmol}$), hexabutylditin ($197 \mathrm{mg}, 0.34 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAC})_{2}$ ($8 \mathrm{mg}, 0.2$ equiv.) and $\mathrm{PPh}_{3}(18 \mathrm{mg}, 0.4$ equiv.) in dry DM F $\left(2 \mathrm{~cm}^{3}\right)$ was stirred at $120^{\circ} \mathrm{C}$ for 2 h . The resulting mixture was poured into brine and extracted with AcOEt. The extract was washed with brine, dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and evaporated under reduced pressure. Purification of the residue by column chromatography with hexane-A cOEt (2:1) as eluent gave a colourless solid 12 ($29 \mathrm{mg}, 28 \%$), mp $118-118.5^{\circ} \mathrm{C}$ (from methanol) (Found: C, 38.68; H, 4.27; N, 4.28. Calc. for $\left.\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Br}_{2} \mathrm{Sn}: \mathrm{C}, 38.75 ; \mathrm{H}, 4.34 ; \mathrm{N}, 4.30 \%\right) ; \delta_{\mathrm{H}}(270 \mathrm{M} \mathrm{Hz}$, $\left.\mathrm{CDCl}_{3}\right) 0.75\left[6 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9,2 \times\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right], 1.14-1.55(12 \mathrm{H}, \mathrm{m})$, $3.90\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 4.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and $7.02(2 \mathrm{H}, \mathrm{s}$, $2 \times 4-\mathrm{H}) ; \delta_{\mathrm{c}}\left(67.8 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 13.44,24.32,25.38,25.95$, $26.97,52.40,98.64,118.06,124.08,139.19$ and $166.41 ; v_{\text {max }}$ $\mathrm{cm}^{-1} 2960,1637$ (C=O), 1509, 1435, 1363, 1224, 1049 and 762; $\mathrm{m} / \mathrm{z}(\mathrm{FAB}) 651\left(\mathrm{M}^{+}+1\right)$.

M ethod B. A suspension of the dihydrodipyrrin $\mathbf{7}$ ($70 \mathrm{mg}, 0.17$ mmol), hexabutylditin ($199 \mathrm{mg}, 0.34 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (38 $\mathrm{mg}, 0.2$ equiv.) in dry DMF $\left(2 \mathrm{~cm}^{3}\right)$ was stirred at $80^{\circ} \mathrm{C}$ for 6 h . The above described work-up afforded the dihydrodipyrrin-tin complex 12 ($15 \mathrm{mg}, 14 \%$).

Facile conversion of the dihydrodipyrrin 7 into the dihydrodipyrrin-tin complex 12

To a suspension of the dihydrodipyrrin $7(1.26 \mathrm{~g}, 3.01 \mathrm{mmol})$ and dibutyltin dichloride ($915 \mathrm{mg}, 3.01 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30$ cm^{3}), triethylamine ($6 \mathrm{~cm}^{3}$) was added at once. The mixture was stirred at room temperature for 1 h after which it was washed with aq. citric acid, aq. NaHCO_{3} and water, dried $\left(\mathrm{M} \mathrm{SOO}_{4}\right)$ and evaporated under reduced pressure. Purification of the residue by column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (1:1) as eluent gave the dihydrodipyrrin-tin complex 12 ($1.83 \mathrm{~g}, 93 \%$).

Facile conversion of the dihydrodipyrrin-tin complex 12 into the dihydrodipyrrin 7

TFA ($24 \mathrm{mg}, 0.21 \mathrm{mmol}$) was added to a solution of complex $\mathbf{1 2}$ ($67 \mathrm{mg}, 0.10 \mathrm{mmol}$) in hexane ($3 \mathrm{~cm}^{3}$). Within a few minutes, a white solid was precipitated. The mixture was stirred for 20 min, after which the product was filtered off and washed with hexane to afford the dihydrodipyrrin 7 as a spectroscopically pure white solid ($37 \mathrm{mg}, 85 \%$).

X-R ay crystal structure determination of compound 11

Recrystallization of the compound from hexane gave colourless needles suitable for X -ray analysis.
Crystal data. $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{H}_{2} \mathrm{O}_{8} \mathrm{Br}_{2}, \quad \mathrm{M}=620.29$. Triclinic, $\mathrm{a}=11.151(3), \quad \mathrm{b}=12.256(3), \mathrm{c}=11.113(4) \AA, \quad a=95.76(2)$, $\beta=114.28(2), \gamma=73.75(2)^{\circ}, \mathrm{V}=1329.0(7) \AA^{3}$ (by least-squares refinement on diffractometer angles for 21 automatically centred reflections, $\lambda=0.71069 \AA$), space group $P \overline{1}(\# 2), Z=2$, $\mathrm{D}_{\mathrm{x}}=1.550 \mathrm{~g} \mathrm{~cm}^{-3}$. Colourless, prism crystals. Crystal dimensions: $0.35 \times 0.30 \times 0.10 \mathrm{~mm}, \mu(\mathrm{M} 0-\mathrm{K} \alpha) 31.06 \mathrm{~cm}^{-1}$.
Data collection and processing. Rigaku AFC7R diffractometer, $\omega / 2 \theta$ mode with ω scan width $(1.63+0.30 \tan \theta)^{\circ}, \omega$ scan speed $4.0^{\circ} \mathrm{min}^{-1}$, graphite-monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation; 6417 reflections measured ($0<2 \theta<55^{\circ},+h, \pm k, \pm$) ; 6099 unique; 3698 with $\mathrm{I}>3 \sigma(\mathrm{I})$ which were retained in all calculations. A linear correction factor was applied to the data for crystal decay, ca. 17\%. A n empirical absorption correction was applied (transmission factors: 0.67-1.00). The data were corrected for L orentz and polarization factors.
Structure analysis and refinement. Direct methods. Fullmatrix least-squares refinement with all non-hydrogen atoms anisotropic and hydrogens in calculated positions. The maximum peak in the final $\Delta \mathrm{F}$ map was $0.79 \mathrm{e}^{-3}$. Refinement with 3698 independent reflections and 316 variable parameters gave $R=0.047$ and $R_{w}=0.044$. The X-ray molecular structure is shown in Fig. 1. Programs and computers used and sources of scattering factor data are given in ref. 15. A tomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic D ata Centre. \dagger

X-R ay crystal structure determination of compound 12

Recrystallization of the compound from methanol gave colourless needles suitable for X -ray analysis.

Crystal data. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Br} \mathrm{r}_{2} \mathrm{Sn}, \mathrm{M}=650.96$. M onoclinic, $a=9.853(5), \quad b=18.322(4), \quad c=13.948(4) \quad \AA, \quad \beta=97.40(3)^{\circ}$, $V=2497(1) \AA^{3}$ (by least-squares refinement on diffractometer angles for 16 automatically centred reflections, $\lambda=0.71069 \AA$), space group $\mathrm{P}_{1} / \mathrm{C}$ (\#14), $Z=4, \mathrm{D}_{\mathrm{x}}=1.731 \mathrm{~g} \mathrm{~cm}^{-3}$. Colourless,

[^0]prismatic crystals. Crystal dimensions: $0.30 \times 0.25 \times 0.20 \mathrm{~mm}$, $\mu(\mathrm{M} \mathrm{o-K} \alpha) 42.60 \mathrm{~cm}^{-1}$.

Data collection and processing. Rigaku AFC7R diffractometer, $\omega / 2 \theta$ mode with ω scan width $(1.73+0.30 \tan \theta)^{\circ}, \omega$ scan speed $6.0^{\circ} \mathrm{min}^{-1}$, graphite-monochromated $\mathrm{M} \mathrm{o-K} \alpha$ radiation; 6235 reflections measured ($0<2 \theta<55^{\circ},+h,+\mathrm{k}, \pm$) ; 5907 unique; 2928 with I > $3 \sigma(\mathrm{I})$ which were retained in all calculations. An empirical absorption correction was applied (transmission factors: 0.87-0.99). The data were corrected for L orentz and polarization factors.
Structure analysis and refinement. Direct methods. Fullmatrix least-squares refinement with all non-hydrogen atoms anisotropic and hydrogens in calculated positions. The maximum peak in the final $\Delta \mathrm{F}$ map was $0.56 \mathrm{e} \AA^{-3}$. R efinement with 2928 independent reflections and 271 variable parameters gave $R=0.045$ and $R_{w}=0.045 . C(15)-C(17)$ and $C(19)-C(20)$ in the butyl groups were refined as riding atoms with $\mathrm{C}-\mathrm{C}$ distances of $1.54 \AA$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles of 111.0° in order to find the best placement of the carbon atoms in alkyl chains. The X-ray molecular structure is shown in Fig. 2. Programs and computers used and sources of scattering factor data are given in ref. 15. A tomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic D ata Centre. \dagger

1996, 61, 3590; K. C. Chan, X. Zhou, B. Luo and T. C. W. M ak, J. C hem. Soc., C hem. C ommun., 1994, 271; H. A li and J. E. van L ier, Tetrahedron, 1994, 50, 11933; S. G. DiM agno, V. S.-Y. Lin and M . J. Therien, J. O rg. Chem., 1993, 58, 5983.
2 J. K. Stille, Angew. Chem., Int. Ed. Engl., 1986, 25, 508; T. N. M itchell, Synthesis, 1992, 803 and references cited therein.
3 G. P. A rsenault, E. Bullock and S. F. M acD onald, J. A m. Chem. Soc., 1960, 82, 4384.
4 P. Bélanger, Tetrahedron Lett., 1979, 20, 2505.
5 D. M. Bailey, R. E. Johnson and N. F. A lbertson, Org. Synth., Coll. Vol. VI, 1988, p. 618.
6 P. Baker, P. G endler and H. R apoport, J. Org. C hem., 1978, 43, 4849.
7 J. Tang and J. G. Verkade, J. Org. C hem., 1994, 59, 7793.
8 H. J. A nderson and S.-F. Lee, C an. J. Chem., 1965, 43, 409.
9 P. E. Sonnet, J. Org. Chem., 1971, 36, 1005.
10 J. B. Paine III, R. B. Woodward and D. Dolphin, J. Org. Chem., 1976, 41, 2826.
11 L. Grehn and U. R agnarsson, A ngew. Chem., Int. Ed. Engl., 1984, 23, 296.
12 M. K osugi, T. Ohya and T. M igita, Bull. Chem. Soc. J pn., 1983, 56, 3855; M. K osugi, K . Shimizu, A. Ohtani and T. M igita, Chem. Lett., 1981, 829.
13 J. Wang and A. E. Scott, Tetrahedron Lett., 1996, 37 3247; A. A lvarez, A. Guzmán, A. Ruiz, E. Velarde and J. M . M uchowski, J. Org. Chem., 1992, 57, 1653.

14 G. Y agil, Tetrahedron, 1967, 23, 2855.
15 TEX SA N : C rystal StructureA nalysis Package, M olecular Structure Corporation, 1985 and 1992.

Paper 7/00154A
Received 7th J anuary 1997
A ccepted 11th February 1997

[^0]: \dagger For details see Instructions for Authors (1997), J. Chem Soc., Perkin Trans 1, 1997, Issue 1. All requests for this information should be accompanied by a full bibliographic citation together with the reference number CCD C 207/103.

